Astragaloside IV protects against C/EBP homologous protein-mediated apoptosis in oxidized low-density lipoprotein-treated macrophages by promoting autophagy.

European journal of pharmacology(2022)

引用 3|浏览6
暂无评分
摘要
Astragaloside Ⅳ (AS-Ⅳ) is one of the main active components extracted from Astragalus membranaceus that exerts an antiatherosclerotic effect. Our study explored the underlying anti-apoptotic effects and the mechanisms of action of AS-Ⅳ in oxidized low-density lipoprotein (oxLDL)-stimulated macrophages and in vulnerable plaques. The results showed that AS-Ⅳ lowered the oxLDL-induced lipid content and reversed the oxLDL-induced reduction in cell viability and elevation in lactate dehydrogenase (LDH) leakage and apoptosis in RAW264.7 macrophages, similar to the effects of 4-phenylbutyric acid (PBA, an ER stress inhibitor). In addition, consistent with the effect exerted by PBA, AS-Ⅳ inhibited oxLDL-triggered ER stress activation by decreasing the level of inositol-requiring enzyme1 phosphorylation and transcription factor 6 nuclear translocation and upregulating the protein and mRNA expression of glucose-regulated protein 78 (GPR78) and C/EBP homologous protein (CHOP). As expected, autophagy activation was induced by AS-IV, evidenced by increased expression of microtubule-associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ), autophagy-related gene 5, and beclin-1 in macrophages. Furthermore, after pretreatment with 3-methyladenine and beclin-1 small interfering RNA, the inhibitory role played by AS-Ⅳ in oxLDL-induced ER stress-CHOP-mediated macrophage apoptosis was weakened, while its inhibitory effect was further enhanced by rapamycin pretreatment. Moreover, administration of AS-Ⅳ or rapamycin to Apoe-/- mice upregulated LC3-Ⅱ expression and collagen content but decreased CHOP expression, macrophage apoptosis, and lipid areas. Overall, by promoting autophagy, AS-Ⅳ effectively protects macrophages from oxLDL-induced apoptosis mediated by ER stress-CHOP, which may reinforce the stability of atherosclerotic plaques.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要