Quantitative determination of interlayer electronic coupling at various critical points in bilayer MoS2

PHYSICAL REVIEW B(2022)

引用 2|浏览22
暂无评分
摘要
Tailoring interlayer coupling has emerged as a powerful tool to tune the electronic structure of van der Waals (vdW) bilayers. One example is the usage of the "moire pattern " to create controllable two-dimensional electronic superlattices through the configurational dependence of interlayer electronic couplings. This approach has led to some remarkable discoveries in twisted graphene bilayers, and transition metal dichalcogenide homo-and heterobilayers. However, a largely unexplored factor is the interlayer distance d, which can impact the interlayer coupling strength exponentially. In this paper, we quantitatively determine the coupling strengths as a function of interlayer spacing at various critical points of the Brillouin zone in bilayer MoS2. The exponential dependence of the coupling parameter on the gap distance is demonstrated. Most significantly, we achieved a 280% enhancement of K-valley coupling strength with an 8% reduction of the vdW gap, pointing to a strategy for designing a unique electronic system in vdW bilayers.
更多
查看译文
关键词
electronic coupling,interlayer,bilayer,various critical points
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要