Comparing deep eutectic solvents and cyclodextrin complexes as curcumin vehicles for blue-light antimicrobial photodynamic therapy approaches

Photochemical & Photobiological Sciences(2022)

引用 1|浏览7
暂无评分
摘要
Curcumin (Cur), a polyphenolic compound derived from Curcuma longa L., has garnered the attention of the scientific community due to its remarkable biological properties such as its potential as a photosensitizing agent for photodynamic therapy (PDT). However, due to its low solubility in aqueous media and instability at physiological and alkaline pH, Cur has struggled to find relevant clinical application. To tackle these shortcomings, two distinct Cur-based formulations based on either complexation with methyl-β-cyclodextrin (MβCD), MβCDC-Cur, or dissolution in a choline chloride (ChCl): glycerol (Gly) deep eutectic solvent (DES), DES-Cur, were produced, physio-chemically characterized and compared regarding their potential as phototherapeutic agents for blue-light antimicrobial photodynamic therapy (aPDT) approaches. Both MβCD-Cur and DES-Cur were able to greatly enhance Cur solubility profile when compared to Cur powder. However, MβCD-Cur appears to hinder some of Cur’s basal biological properties and possessed greater basal cytotoxicity towards L929 murine fibroblast cell line. Furthermore, MβCD-Cur was less photo-responsive when exposed to light which may hamper its application in blue-light aPDT approaches. In contrast, DES-Cur showed good biological properties and high photoresponsivity, displaying relevant phototoxicity against bacterial pathogens (≥ 99.9% bacterial reduction) while being better tolerated by L929 murine cells. Overall, this study found DES to be the more effective vehicle for Cur in terms of phototherapeutic potential which will serve as basis to develop novel platforms and approaches for blue-light aPDT targeting localized superficial infections. Graphical abstract
更多
查看译文
关键词
Curcumin, Photosensitizer, Photodynamic therapy, Deep eutectic solvents, Cyclodextrin, Antimicrobial, Phototoxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要