谷歌浏览器插件
订阅小程序
在清言上使用

Linking hubness, embryonic neurogenesis, transcriptomics and diseases in human brain networks

biorxiv(2023)

引用 0|浏览32
暂无评分
摘要
Understanding the architectural principles that shape human brain networks is a major challenge for systems neuroscience. We hypothesize that the centrality of the different brain circuits in the human connectome is a product of their embryogenic age, such that early-born nodes should become stronger hubs than those born later. Using a human brain segmentation based on embryogenic age, we observed that nodes’ structural centrality correlated with their embryogenic age, fully confirming our hypothesis. Distinct trends were found at different resolutions on a functional level. The difference in embryonic age between nodes inversely correlated with the probability of existence of links and their weights. Brain transcriptomic analysis revealed strong associations between embryonic age, structure-function centrality, and the expression of genes related to nervous system development, synapse regulation and human neurological diseases. Our results highlight two key principles regarding the wiring of the human brain, “preferential age attachment” and “the older gets richer”. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要