A Minimally Invasive, Fast Spinal Cord Lateral Hemisection Technique for Modeling Open Spinal Cord Injuries in Rats.

Krisztián B Csomó,Gábor Varga,Andrea A Belik,László Hricisák, Zoltán Borbély,Gábor Gerber

Journal of visualized experiments : JoVE(2022)

引用 0|浏览6
暂无评分
摘要
Open spinal cord injury techniques modeling laceration-like injuries are time-consuming and invasive because they involve laminectomy. This new technique eliminates laminectomy by removing two spinous processes and lifting, then tilting the caudal vertebral arch. The surgical area opens up without the need for laminectomy. Lateral hemisection is then performed with direct visible control under a microscope. The trauma is minimized, requiring only a small bone wound. This technique has several advantages: it is faster and, therefore, less of a burden for the animal, and the bone wound is smaller. Because the laminectomy is eliminated, there is less chance for unwanted injury to the spinal cord, and there are no bone splinters that can cause problems (bone splinters embedded in the spinal cord can cause swelling and secondary damage). The vertebral canal remains intact. The main limitation is that the hemisection can only be performed in the intervertebral spaces. The results show that this technique can be performed much faster than the traditional surgical approach, using laminectomy (11 min vs. 35 min). This technique can be useful for researchers working with animal models of open spinal cord injury as it is widely adaptable and does not require any additional specialized instrumentation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要