Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios.

International Conference on Machine Learning Technologies (ICMLT)(2022)

引用 0|浏览3
暂无评分
摘要
When learning to behave in a stochastic environment where safety is critical, such as driving a vehicle in traffic, it is natural for human drivers to plan fallback strategies as a backup to use if ever there is an unexpected change in the environment. Knowing to expect the unexpected, and planning for such outcomes, increases our capability for being robust to unseen scenarios and may help prevent catastrophic failures. Control of Autonomous Vehicles (AVs) has a particular interest in knowing when and how to use fallback strategies in the interest of safety. Due to imperfect information available to an AV about its environment, it is important to have alternate strategies at the ready which might not have been deduced from the original training data distribution. In this paper we present a principled approach for a model-free Reinforcement Learning (RL) agent to capture multiple modes of behaviour in an environment. We introduce an extra pseudo-reward term to the reward model, to encourage exploration to areas of state-space different from areas privileged by the optimal policy. We base this reward term on a distance metric between the trajectories of agents, in order to force policies to focus on different areas of state-space than the initial exploring agent. Throughout the paper, we refer to this particular training paradigm as learning fallback strategies. We apply this method to an autonomous driving scenario, and show that we are able to learn useful policies that would have otherwise been missed out on during training, and unavailable to use when executing the control algorithm.
更多
查看译文
关键词
Reinforcement Learning, Autonomous Vehicle, Safe Control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要