A Concurrent Switching Model for Traffic Congestion Control

IFAC PAPERSONLINE(2023)

引用 0|浏览3
暂无评分
摘要
We introduce a new conservation-based approach for traffic coordination modeling and control in a network of interconnected roads (NOIR) with switching movement phase rotations at every NOIR junction. For modeling of traffic evolution, we first assume that the movement phase rotation is cyclic at every NOIR junction, but the duration of each movement phase can be arbitrarily commanded by traffic signals. Then, we propose a novel concurrent switching dynamics (CSD) with deterministic transitions among a finite number of states, representing the NOIR movement phases. We define the CSD control as a cyclic receding horizon optimization problem with periodic quadratic cost and constraints. More specifically, the cost is defined so that the traffic density is minimized and the boundary inflow is uniformly distributed over the boundary inlet roads, whereas the cost parameters are periodically changed with time. The constraints are linear and imposed by a trapezoidal fundamental diagram at every NOIR road so that traffic feasibility is assured and traffic over-saturation is avoided. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
更多
查看译文
关键词
Traffic congestion control,model predictive control,network dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要