A Special Ancient Bronze Sword and Its Possible Manufacturing Technique from Materials Science Analysis

MATERIALS(2022)

引用 1|浏览11
暂无评分
摘要
In this study, it was found that an ancient bronze sword had special microstructures, i.e., a tin (Sn)-rich layer (Sn: 38.51 wt.%), that was around 0.1-0.3 mm in thickness in the bronze substrate (Sn: 18.57 wt.%). This sword was unearthed from the same Chu tombs of the "Sword of Gou Jian", and dated back to the late Spring and Autumn Period (496 BC-464 BC). The experimental and theoretical analyses revealed that (1) the Sn-rich layer exhibited higher microhardness (around 650 HV) than the sword body (around 300 HV); (2) the Sn-rich layer showed a brittle fracture due to the formation of a large amount of alpha + delta eutectoid, while the sword body was of good toughness due to a large amount of alpha-Cu solid solution phase; and (3) theoretical calculations of Sn diffusion in the Cu substrate indicated that this Sn-rich layer could have been formed within several hours or several days if the temperature was above 600 degrees C. Therefore, this sword was proposed to be a novel kind of composite bronze sword, and the possible manufacturing technique was a surface treatment called "dip or wipe tinning" or tin amalgam, which was widely used in the Bronze Age. Technically, this process possesses more advantages than the well-known two-times casting for making the "double-colour" or bi-metallic composite bronze sword. This research showed that the materials processing level was beyond our expectations for ancient China 2500 years ago.
更多
查看译文
关键词
composite bronze sword, copper-tin alloy, element diffusion, Fick's law, ancient bronzes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要