Preclinical Data on the Gardnerella-Specific Endolysin PM-477 Indicate Its Potential to Improve the Treatment of Bacterial Vaginosis through Enhanced Biofilm Removal and Avoidance of Resistance

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2022)

引用 10|浏览8
暂无评分
摘要
Antibiotics are the mainstay of therapy for bacterial vaginosis (BV). However, the rate of treatment failure in patients with recurrent BV is about 50%. Herein, we investigated potential mechanisms of therapy failure, including the propensity of resistance formation and biofilm activity of metronidazole (MDZ), clindamycin (CLI), and PM-477, a novel investigational candidate that is a genetically engineered endolysin with specificity for bacteria of the genus Gardnerella. Determination of the MIC indicated that 60% of a panel of 22 Gardnerella isolates of four different species were resistant to MDZ, while all strains were highly susceptible to CLI and to the endolysin PM-477. Six strains, all of which were initially susceptible to MDZ, were passaged with MDZ or its more potent hydroxy metabolite. All of them generated full resistance after 5 to 10 passages, resulting in MICs of >512 mu g/mL. In contrast, only a mild increase in MIC was found for PM-477. There was also no cross-resistance formation, as MDZ-resistant Gardnerella strains remained highly susceptible to PM-477, both in suspension and in preformed biofilms. Strains that were resistant to MDZ in suspension were also tolerant to MDZ at >2,048 mu g/mL when growing as biofilm. All strains were susceptible to PM-477 when grown as preformed biofilms, at minimum biofilm eradication concentrations (MBECs) in the range of 1 to 4 mu g/mL Surprisingly, the MBEC of CU was >512 mu g/mL for 7 out of 9 tested Gardnerella strains, all of which were susceptible to CLI when growing in suspension. The observed challenges of MDZ and CLI due to resistance formation and ineffectiveness on biofilm, respectively, could be one explanation for the frequent treatment failures in uncomplicated or recurrent BV. Therefore, the high efficacy of PM-477 in eliminating Gardnerella in in vitro biofilms, as well as its high resilience to resistance formation, makes PM-477 a promising potential alternative for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.
更多
查看译文
关键词
bacterial vaginosis, metronidazole resistance, Gardnerella biofilm, endolysin, alternative to antibiotic treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要