Self-assembly and disassembly mechanisms of biomimetic peptides: Molecular dynamics simulation and experimental measurement.

International journal of biological macromolecules(2022)

引用 2|浏览5
暂无评分
摘要
Drug-loaded pH-responsive nanoparticles are potential drug carriers in nanotherapeutics delivery because they can remain stable in normal tissues but can disassemble and release drug molecules in tumors. In this study, the mechanisms of self-assembly and disassembly were investigated by analyzing the characteristics of three kinds of biomimetic peptides with different components and sequences. The structural parameters and energy changes during self-assembly and disassembly were calculated by molecular dynamics simulation. Transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy were used to observe morphological changes and measure the strength of hydrophobic and hydrophilic interactions between peptides. Results show that the hydrophobic and hydrophilic interactions play crucial roles in the self-assembly and disassembly processes of peptides. The structure of the peptide clusters after self-assembly became tighter as the difference between hydrophobic and hydrophilic interactions increased, whereas a decrease in this difference led to the increased disassembly of the peptides. In general, polyethylene glycol chain modification was necessary in disassembly, and peptides with straight structures had stronger disassembly ability than that with branched structures with the same components. The morphology of peptide clusters can be controlled under different pH values by changing the composition and structure of the peptides for enhanced drug retention and sustained release.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要