Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke

SCIENCE TRANSLATIONAL MEDICINE(2022)

引用 14|浏览14
暂无评分
摘要
Stroke penumbra injury caused by excess glutamate is an important factor in determining stroke outcome; however, several therapeutic approaches aiming to rescue the penumbra have failed, likely due to unspecific targeting and persistent excitotoxicity, which continued far beyond the primary stroke event. Synaptic lipid signaling can modulate glutamatergic transmission via presynaptic lysophosphatidic acid (LPA) 2 receptors modulated by the LPA- synthesizing molecule autotaxin (ATX) present in astrocytic perisynaptic processes. Here, we detected long-lasting increases in brain ATX concentrations after experimental stroke. In humans, cerebrospinal fluid ATX concentration was increased up to 14 days after stroke. Using astrocyte-specific deletion and pharmacological inhibition of ATX at different time points after experimental stroke, we showed that inhibition of LPA-related cortical excitability improved stroke outcome. In transgenic mice and in individuals expressing a single-nucleotide polymorphism that increased LPA-related glutamatergic transmission, we found dysregulated synaptic LPA signaling and subsequent negative stroke outcome. Moreover, ATX inhibition in the animal model ameliorated stroke outcome, suggesting that this approach might have translational potential for improving the outcome after stroke.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要