Optical coherence tomography in coronary atherosclerosis assessment and intervention

Makoto Araki,Seung‐Jung Park,Harold L. Dauerman,Shiro Uemura,Jung-Sun Kim,Carlo Di Mario,Tom Johnson,Giulio Guagliumi,Adnan Kastrati,Michael Joner,Niels Ramsing Holm,Fernándo Alfonso,William Wijns,Tom Adriaenssens,Holger Nef,Gilles Rioufol,Nicolas Amabile,Géraud Souteyrand,Nicolas Meneveau,Édouard Gerbaud,Maksymilian P. Opolski,Nieves Gonzalo,Guillermo J. Tearney,Brett E. Bouma,Aaron D. Aguirre,Gary S. Mintz,Gregg W. Stone,Christos V. Bourantas,Lorenz Räber,Sebastiano Gili,Kyoichi Mizuno,Shigeki Kimura,Toshiro Shinke,Myeong‐Ki Hong,Yangsoo Jang,Jin Man Cho,Bryan P. Yan,Italo Porto,Giampaolo Niccoli,Rocco Antonio Montone,Vikas Thondapu,Michail I. Papafaklis,Lampros K. Michalis,Harmony R. Reynolds,Jacqueline Saw,Peter Libby,Giora Weisz,Mario Iannaccone,Tommaso Gori,Konstantinos Toutouzas,Taishi Yonetsu,Yoshiyasu Minami,Masamichi Takano,O. Raffel,Osamu Kurihara,Tsunenari Soeda,Tomoyo Sugiyama,Hyung Oh Kim,Tetsumin Lee,Takumi Higuma,Ayako Nakajima, Etsuhide Yamamoto,Krzysztof Bryniarski,Luca Di Vito,Rocco Vergallo,Francesco Fracassi,Michele Russo,Lena Marie Seegers,Iris McNulty,Sangjoon Park,Marc D. Feldman,Javier Escaned,Francesco Prati,Eloisa Arbustini,Fausto J. Pinto,Ron Waksman,Hector Garcia-Garcia,Akiko Maehara,Ziad Ali,Aloke V. Finn,Renu Virmani,Annapoorna Kini,Joost Daemen,Teruyoshi Kume,Kiyoshi Hibi,Atsushi Tanaka,Takashi Akasaka,Takashi Kubo,Satoshi Yasuda,Kevin Croce,Juan F. Granada,Amir Lerman,Abhiram Prasad,Evelyn Regar,Yoshihiko Saito,Mullasari S. Ajit,Vijayakumar Subban,Neil J. Weissman,Yundai Chen,Bo Yu,Stephen J. Nicholls,Peter Barlis,Nick E.J. West,Armin Arbab‐Zadeh,Jong Chul Ye,Jouke Dijkstra,Hang Lee,Jagat Narula,Filippo Crea,Sunao Nakamura,Tsunekazu Kakuta,James G. Fujimoto,Valentín Fuster,Ik‐Kyung Jang

NATURE REVIEWS CARDIOLOGY(2022)

引用 73|浏览83
暂无评分
摘要
Since optical coherence tomography (OCT) was first performed in humans two decades ago, this imaging modality has been widely adopted in research on coronary atherosclerosis and adopted clinically for the optimization of percutaneous coronary intervention. In the past 10 years, substantial advances have been made in the understanding of in vivo vascular biology using OCT. Identification by OCT of culprit plaque pathology could potentially lead to a major shift in the management of patients with acute coronary syndromes. Detection by OCT of healed coronary plaque has been important in our understanding of the mechanisms involved in plaque destabilization and healing with the rapid progression of atherosclerosis. Accurate detection by OCT of sequelae from percutaneous coronary interventions that might be missed by angiography could improve clinical outcomes. In addition, OCT has become an essential diagnostic modality for myocardial infarction with non-obstructive coronary arteries. Insight into neoatherosclerosis from OCT could improve our understanding of the mechanisms of very late stent thrombosis. The appropriate use of OCT depends on accurate interpretation and understanding of the clinical significance of OCT findings. In this Review, we summarize the state of the art in cardiac OCT and facilitate the uniform use of this modality in coronary atherosclerosis. Contributions have been made by clinicians and investigators worldwide with extensive experience in OCT, with the aim that this document will serve as a standard reference for future research and clinical application.
更多
查看译文
关键词
Atherosclerosis,Interventional cardiology,Medicine/Public Health,general,Cardiology,Cardiac Imaging,Cardiac Surgery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要