Electronic and Near-Infrared-II Optical Properties of I-Doped Monolayer MoTe2: A First-Principles Study

ACS OMEGA(2022)

引用 4|浏览5
暂无评分
摘要
cence imaging is widely used for in vivo biological imaging. With the unique electronic structures and capability of band-gap engineering, two-dimensional (2D) materials can be potential candidates for NIR-II imaging. Herein, a theoretical investigation of the electronic structure and optical properties of iodine (I)doped monolayer MoTe2 systems with different doping concentrations is carried out through simulations to explore their NIR optical properties. The results suggest that the emergence of impurity levels due to I doping effectively reduces the bandwidth of I-doped monolayer MoTe2 systems, and the bandwidth decreases with the increase in the I doping concentration. Although the I and Mo atoms possess clear covalent-bonding features according to the charge density difference, impurity levels induced by the strong hybridization between the I 5p and Mo 4d orbitals cross the Fermi level, making the doped systems exhibit metallic behavior. In addition, with the increase in the I doping concentration, the energy required for electron transition from valence bands to impurity levels gradually decreases, which can be linked to the enhancement of the optical absorption in the red-shifted NIR-II region. Meanwhile, with a higher I doping concentration, the emission spectra, which are the product of the absorption spectra and quasiFermi distributions for electrons and holes, can be enhanced in the NIR-II window.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要