Comparative Evaluation of Six SARS-CoV-2 Real-Time RT-PCR Diagnostic Approaches Shows Substantial Genomic Variant-Dependent Intra- and Inter-Test Variability, Poor Interchangeability of Cycle Threshold and Complementary Turn-Around Times

PATHOGENS(2022)

引用 5|浏览6
暂无评分
摘要
Several professional societies advise against using real-time Reverse-Transcription PCR (rtRT-PCR) cycle threshold (Ct) values to guide clinical decisions. We comparatively assessed the variability of Ct values generated by six diagnostic approaches by testing serial dilutions of well-characterized isolates of 10 clinically most relevant SARS-CoV-2 genomic variants: Alpha, Beta, Gamma, Delta, Eta, Iota, Omicron, A.27, B.1.258.17, and B.1 with D614G mutation. Comparison of three fully automated rtRT-PCR analyzers and a reference manual rtRT-PCR assay using RNA isolated with three different nucleic acid isolation instruments showed substantial inter-variant intra-test and intra-variant inter-test variability. Ct value differences were dependent on both the rtRT-PCR platform and SARS-CoV-2 genomic variant. Differences ranging from 2.0 to 8.4 Ct values were observed when testing equal concentrations of different SARS-CoV-2 variants. Results confirm that Ct values are an unreliable surrogate for viral load and should not be used as a proxy of infectivity and transmissibility, especially when different rtRT-PCR assays are used in parallel and multiple SARS-CoV-2 variants are circulating. A detailed turn-around time (TAT) comparative assessment showed substantially different TATs, but parallel use of different diagnostic approaches was beneficial and complementary, allowing release of results for more than 81% of non-priority samples within 8 h after admission.
更多
查看译文
关键词
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 19 (COVID-19), genomic variant, real-time RT-PCR, Ct value, turn-around time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要