Frequency chirped Fourier-Transform spectroscopy

COMMUNICATIONS PHYSICS(2023)

引用 3|浏览13
暂无评分
摘要
Fast (sub-second) spectroscopy with high spectral resolution is of vital importance for revealing quantum chemistry kinetics of complex chemical and biological reactions. Fourier transform (FT) spectrometers can achieve high spectral resolution and operate at hundreds of ms time scales in rapid-scan mode. However, the linear translation of a scanning mirror imposes stringent time-resolution limitations to these systems, which makes simultaneous high spectral and temporal resolution very difficult. Here, we demonstrate an FT spectrometer whose operational principle is based on continuous rotational motion of the scanning mirror, effectively decoupling the spectral resolution from the temporal one. Furthermore, we show that such rotational FT spectrometer can perform Mid-IR dual-comb spectroscopy with a single comb source, since the Doppler-shifted version of the comb serves as the second comb. In our realization, we combine the advantages of dual-comb and FT spectroscopy using a single quantum cascade laser frequency comb emitting at 8.2 mu m as a light source. Our technique does not require any diffractive or dispersive optical elements and hence preserve the Jacquinot's-, Fellgett's-, and Connes'-advantages of FT spectrometers. By integrating mulitple broadband sources, such system could pave the way for applications where high speed, large optical bandwidth, and high spectral resolution are desired. Fast and high-resolution Fourier transform spectrometers are indispensable for cutting-edge infrared spectroscopy. In this study, the authors employed a newly-designed fast-rotating retroreflective, broadband delay line demonstrating fast dual-comb spectroscopy with a single mid-infrared optical comb from a quantum cascade laser emitting at 8 micrometers.
更多
查看译文
关键词
Optical materials and structures,Optical spectroscopy,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要