谷歌浏览器插件
订阅小程序
在清言上使用

Characterization of the Coriolis Coupled Far-Infrared Bands of Syn-Vinyl Alcohol.

˜The œjournal of physical chemistry A/˜The œjournal of physical chemistry A(2022)

引用 2|浏览3
暂无评分
摘要
Rotational emission from vibrationally excited molecules are responsible for a large fraction of lines in the spectra of interstellar molecular clouds. Vinyl alcohol (VA) has two rotamers that differ in energy by 6.4 kJ/mol, both of which have been observed toward the molecular cloud, Sagittarius B2(N) [Turner and Apponi, Astrophys. J. 2001, 561, 207]. Previously, we reported an analysis of the far-infrared spectrum of the higher energy rotamer, anti-VA [Bunn et al. Astrophys. J. 2017, 847, 67], yielding rotational and higher order distortion constants in the first excited vibrational state, and here, we report an analysis of the far-infrared spectrum of the lower energy rotamer, syn-VA, whose spectrum is significantly more complicated on account of Coriolis interactions that result in perturbations to the rovibrational spectrum. We account for those perturbations with the inclusion of Coriolis coupling constants in the fit, which couples the first excited OH torsional (ν15) and CCO bending (ν11) states. Inclusion of them resulted in more physically meaningful rotational and centrifugal distortion constants, and allows for accurate pure rotational line predictions to be made up to high energies. These will be particularly useful in searches for vibrationally excited syn-VA toward warm regions of interstellar molecular clouds, where we predict that it may be significantly abundant.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要