Piezoionic mechanoreceptors: Force-induced current generation in hydrogels

SCIENCE(2022)

引用 129|浏览56
暂无评分
摘要
The human somatosensory network relies on ionic currents to sense, transmit, and process tactile information. We investigate hydrogels that similarly transduce pressure into ionic currents, forming a piezoionic skin. As in rapid- and slow-adapting mechanoreceptors, piezoionic currents can vary widely in duration, from milliseconds to hundreds of seconds. These currents are shown to elicit direct neuromodulation and muscle excitation, suggesting a path toward bionic sensory interfaces. The signal magnitude and duration depend on cationic and anionic mobility differences. Patterned hydrogel films with gradients of fixed charge provide voltage offsets akin to cell potentials. The combined effects enable the creation of self-powered and ultrasoft piezoionic mechanoreceptors that generate a charge density four to six orders of magnitude higher than those of triboelectric and piezoelectric devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要