Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA

JOURNAL OF PHYSICAL CHEMISTRY B(2022)

引用 0|浏览2
暂无评分
摘要
Efficiency improvement of synthetic enzymes through scaffold modifications suffers from limitations in terms of effectiveness, cost, and potential devastating consequences for protein structural stability. Here, we propose an alternative to scaffold modification, within electrostatic preorganization theory, where the enzyme's greater environment is designed to support the evolution of the reaction in the active site. We demonstrate the feasibility of such an approach by placing a (polar) DNA fragment in the surroundings of the Kemp eliminase enzyme KE15 (structure from Houk's group) and computing the resulting change in catalytic activity. We find that the introduction of a DNA fragment magnifies the contribution of protein residues to the stabilization of the transition state, estimated from electric field calculations with polarizable molecular dynamics. Our randomly generated test systems reveal a 2.0 kcal/mol reduction in activation energy, suggesting that even more significant catalytic improvements could be made by optimizing DNA size, sequence, and orientation with respect to the enzyme, validating our approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要