谷歌浏览器插件
订阅小程序
在清言上使用

Plastic Monolithic Mixed‐Conducting Interlayer for Dendrite‐Free Solid‐State Batteries

Advanced science(2022)

引用 15|浏览8
暂无评分
摘要
AbstractSolid‐state electrolytes (SSEs) hold a critical role in enabling high‐energy‐density and safe rechargeable batteries with Li metal anode. Unfortunately, nonuniform lithium deposition and dendrite penetration due to poor interfacial solid–solid contact are hindering their practical applications. Here, solid‐state lithium naphthalenide (Li‐Naph(s)) is introduced as a plastic monolithic mixed‐conducting interlayer (PMMCI) between the garnet electrolyte and the Li anode via a facile cold process. The thin PMMCI shows a well‐ordered layered crystalline structure with excellent mixed‐conducting capability for both Li+ (4.38 × 10–3 S cm–1) and delocalized electrons (1.01 × 10–3 S cm–1). In contrast to previous composite interlayers, this monolithic material enables an intrinsically homogenous electric field and Li+ transport at the Li/garnet interface, thus significantly reducing the interfacial resistance and achieving uniform and dendrite‐free Li anode plating/stripping. As a result, Li symmetric cells with the PMMCI‐modified garnet electrolyte show highly stable cycling for 1200 h at 0.2 mA cm–2 and 500 h at a high current density of 1 mA cm–2. The findings provide a new interface design strategy for solid‐state batteries using monolithic mixed‐conducting interlayers.
更多
查看译文
关键词
dendrite-free,lithium aromatic hydrocarbon complex,mixed-conducting interlayer,solid-solid interface,solid-state electrolyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要