Electron-beam induced damage process for Ca2Na2Nb5O16 nanosheets

NANOTECHNOLOGY(2022)

引用 0|浏览0
暂无评分
摘要
Dielectric two-dimensional oxide nanosheets are attractive because of their thermal stability and high-k property. However, their atomic structure characterization has been limited since they are easily degraded by electron-beams. This study aimed to investigate the electron-beam induced damage mechanisms for exfoliated Ca2Na2Nb5O16 (CNNO) nanosheets. Knock-on damage dominantly occurred at high voltages, leaving short-range order in the final amorphous structure. On the other hand, a series of chemical reactions predominantly occurred at low voltages, resulting in random elemental loss and a fully disordered amorphous structure. This radiolysis was facilitated by insulated CNNO nanosheets that contained a large number of dangling bonds after the chemical solution process. The radiolysis damage kinetics was faster than knock-on damage and induced more elemental loss. Based on our understanding of the electron beam-induced degradation, atomic-scale imaging of the CNNO nanosheets was successfully performed using Cs-corrected scanning transmission electron microscopy at 300 keV with a decreased beam current. This result is of particular significance because understanding of electron-beam damage in exfoliated and insulating 2D oxide sheets could improve identification of their atomic structure using electron microscopy techniques and lead to a practical guide for further extensive characterization of doped elements and layered structures to improve their properties.
更多
查看译文
关键词
2D nanosheets, perovskite oxide, radiation damage, transmission electron microscope
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要