Neural correlates of texture perception during active touch

BEHAVIOURAL BRAIN RESEARCH(2022)

引用 2|浏览10
暂无评分
摘要
Previous studies have shown attenuation of cortical oscillations over bilateral sensorimotor cortex areas during passive perception of smooth textures applied to the skin. However, humans typically explore surfaces using dynamic hand movements. As movements may both modulate texture-related cortical activity and induce movement-related cortical activation, data from passive texture perception cannot be extrapolated to active texture perception. In the present study, we used electroencephalography to investigate cortical oscillatory changes during texture perception throughout active touch exploration. Three natural textured stimuli were selected: smooth silk, soft brushed cotton, and rough hessian. Texture samples were mounted on a purpose-built touch sensor which measured the load and position of the index finger, whilst electroencephalography from 129 channels recorded oscillatory brain activity. The data were fused to investigate oscillatory changes relating to active touch. Changes in oscillatory band power, event-related desynchronisation/synchronisation (ERD/ERS), were investigated in alpha (8-12 Hz) and beta (16-24 Hz) frequency bands. Active texture exploration revealed bilateral activation patterns over sensorimotor cortical areas. Beta-band ERD increased over contralateral sensorimotor regions for soft and smooth textures, and over ipsilateral sensorimotor areas for the smoothest texture. Analysis of covariance revealed that individual differences in perception of softness and smoothness were related to variations in cortical oscillatory activity. Differences may be due to increased high frequency vibrations for smooth and soft textures compared to rough. For the first time, active touch was quantified and fused with electroencephalography data streams, contributing to the understanding of the neural correlates of texture perception during active touch.
更多
查看译文
关键词
Electroencephalography, Texture perception, Active touch, Time-frequency analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要