Enhancing adsorption efficiencies of organic molecules through covalently bonded structures of magnetic carbon nanoparticles

Journal of Industrial and Engineering Chemistry(2022)

引用 4|浏览6
暂无评分
摘要
This study introduces a facile method for synthesizing covalently bonded magnetic carbon nanoparticles (MCNs) in which carboxylic acid-functionalized activated carbon nanospheres (ACN-COOH) are connected with amine-terminated iron oxide nanoparticles (NPs) (Fe3O4-NH2) via a carbodiimide crosslinking reaction. The adsorption characteristics of the developed magnetic nanoparticles (ACN-Fe3O4) were investigated using a standard cationic dye (methylene blue, MB). Two additional MCNs (multi-core and core@shell structures) were also prepared, and their adsorption performances were extensively compared. The developed ACN-Fe3O4 material thoroughly utilizes the strengths of activated carbon and Fe3O4 themselves, exhibiting large specific surface areas (708.4 m2/g) and strong magnetic properties (40.3 emu/g), resulting in high adsorption capacity (349.5 mg/g) and recycling efficiency (76 % of adsorption performance after four cycles). In addition, a study of the mechanism reveals that pore-filling processes are dominant with minor contributions from electrostatic interactions, π–π interactions, and n–π interactions. The developed covalently bonded magnetic carbon nanoparticles (ACN-Fe3O4) can thus be considered as competent adsorbents with the potential to compensate for the drawbacks of contemporary MCNs, such as, low adsorption capacity, and weak magnetic properties.
更多
查看译文
关键词
Magnetic carbon nanomaterials,Porous materials,Pore filling,Interfacial interaction,Adsorption kinetics & mechanism,Biocompatibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要