Constraints on ion velocity distributions from fusion product spectroscopy

NUCLEAR FUSION(2022)

引用 6|浏览37
暂无评分
摘要
Recent inertial confinement fusion experiments have shown primary fusion spectral moments which are incompatible with a Maxwellian velocity distribution description. These results show that an ion kinetic description of the reacting ions is necessary. We develop a theoretical classification of non-Maxwellian ion velocity distributions using the spectral moments. At the mesoscopic level, a monoenergetic decomposition of the velocity distribution reveals there are constraints on the space of spectral moments accessible by isotropic distributions. General expressions for the directionally dependent spectral moments of anisotropic distributions are derived. At the macroscopic level, a distribution of fluid element velocities modifies the spectral moments in a constrained manner. Experimental observations can be compared to these constraints to identify the character and isotropy of the underlying reactant ion velocity distribution and determine if the plasma is hydrodynamic or kinetic.
更多
查看译文
关键词
neutron spectroscopy, inertial confinement fusion, ion kinetics, fusion product spectroscopy, reaction kinematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要