Performance and bacterial community analysis of a two-stage A/O-MBBR system with multiple chambers for biological nitrogen removal.

Social Science Research Network(2022)

引用 5|浏览5
暂无评分
摘要
A two-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system with multiple chambers was established for municipal wastewater treatment. At the total hydraulic retention time (HRT) of 11.2 h and nitrate recycling ratio of 1, the removal efficiencies reached 83.8%, 82.5%, and 77.8% for soluble chemical oxygen demand (SCOD), 98.0%, 97.5%, and 94.9% for ammonia nitrogen (NH4+-N), and 91.8%, 92.0%, and 87.7% for total inorganic nitrogen (TIN) in summer, autumn and winter, respectively. Biofilms with functional bacterial populations were formed in the pre-anoxic reactors, the pre-oxic reactors, the post-anoxic reactors and the post-oxic reactors of the two-stage A/O-MBBR system. The highest nitrification potential was found in the last oxic reactor of the first A/O-MBBR subsystem with the highest relative abundances of the functional genes including [EC:1.14.99.39] and [EC:1.7.2.6]). The highest denitrification potential was found in the post-anoxic reactors with the highest relative abundances of the functional genes including [EC:1.7.2.1], [EC:1.7.2.5] and [EC:1.7.2.4]. This work constructed an efficient municipal biological nitrogen removal technology to achieve high effluent nitrogen standards in winter, and investigated its working mechanism to provide a basis for its design and optimization.
更多
查看译文
关键词
Biological nitrogen removal,Denitrification,Moving bed biofilm reactor,Nitrification,Two-stage anoxic/oxic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要