Computational Benchmarks with Optimal Multilevel Argyris FEM.

CoRR(2022)

引用 0|浏览0
暂无评分
摘要
The main drawback for the application of the conforming Argyris FEM is the labourious implementation on the one hand and the low convergence rates on the other. If no appropriate adaptive meshes are utilised, only the convergence rate caused by corner singularities [Blum and Rannacher, 1980], far below the approximation order for smooth functions, can be achieved. The fine approximation with the Argyris FEM produces highdimensional linear systems and for a long time an optimal preconditioned scheme was not available for unstructured grids. This paper presents numerical benchmarks to confirm that the adaptive multilevel solver for the hierarchical Argyris FEM from [Carstensen and Hu, 2021] is in fact highly efficient and of linear time complexity. Moreover, the very first display of optimal convergence rates in practically relevant benchmarks with corner singularities and general boundary conditions lead to the rehabilitation of the Argyris finite element from the computational perspective.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要