CO2-Mineralised Nesquehonite: A New “Green” Building Material

Materials Proceedings(2021)

引用 4|浏览2
暂无评分
摘要
Synthetic nesquehonite with a Mg(HCO3)OH·2H2O chemical formula is a solid product of CO2 mineralization with cementitious properties. It constitutes an “MHCH” (magnesium hydroxy-carbonate hydrate) phase and, along with dypingite and hydromagnesite, is considered to be a promising permanent and safe solution for CO2 storage with potential utilization as a supplementary material in “green” building materials. In this work, synthetic nesquehonite-based mortars were evaluated in terms of their compressive strengths. Nesquehonite was synthesized by CO2 mineralization under ambient conditions (25 °C and 1 atm). A saturated Mg2+ solution was used at a pH of 9.3. The synthesized nesquehonite was subsequently studied by means of optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Impurity-free nesquehonite formed elongated fibers, often around a centerpiece, creating a rosette-like structure. The synthesized nesquehonite was mixed with reactive magnesia, natural pozzolan, standard aggregate sand and water to create a mortar. The mortar was cast into 5 × 5 × 5 silicone mold and cured in water for 28 days. A compressive strength of up to 22 MPa was achieved. An X-ray diffraction study of the cured mortars revealed the formation of brucite as the main hydration crystalline phase. Carbon dioxide mineralized nesquehonite is a very promising “green” building material with competitive properties that might prove to be an essential part of the circular economy industrial approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要