Multistatic meteor radar observations to assess the spatial variability of mesospheric/lower thermospheric winds using a 3DVAR+div tomographic retrieval to measure spatially resolved 3D winds 

semanticscholar(2021)

引用 0|浏览1
暂无评分
摘要
<p>The middle atmospheric circulation is driven by atmospheric waves, which carry energy and momentum from their source to the area of their dissipation and thus providing an energetic coupling between different atmospheric layers. A comprehensive understanding of the wave-wave or wave-mean flow interactions often requires a spatial characterization of these waves. Multistatic meteor radar observations provide an opportunity to investigate the spatial and temporal variability of mesospheric/lower thermospheric winds on regional scales. We apply the 3DVAR+div retrievals to observations from the Nordic Meteor Radar Cluster and the Chilean Observation Network De Meteor Radars (CONDOR). Here we present preliminary results of a new 3DVAR+div retrieval to infer the vertical wind variability using spatially resolved observations. The new retrieval includes the continuity equation in the forward model to ensure physical consistency in the vertical winds. Our preliminary results indicate that the vertical wind variability is about +/-2m/s. The 3DVAR+div algorithm provides spatially resolved winds resolves body forces of breaking gravity waves, which are typically indicated by two counterrotating vortices. Furthermore, we infer horizontal wavelength spectra for all 3 wind components to obtain spectral slopes indicating a transition of the vertical to the divergent mode at scales of about 80-120 km at the mesosphere.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要