Microfluidic-supported synthesis of anisotropic polyvinyl methacrylate nanoparticles via interfacial agents

POLYMER CHEMISTRY(2022)

引用 0|浏览9
暂无评分
摘要
For polymer particles, recent studies emphasized that the particle shape-not size-plays the dominant role in novel applications in fields ranging from nanotechnology, biomedicine, to photonics, which has intensified the quest for fabrication platforms of polymer colloids with complex non-spherical (anisotropic) shapes. Here, we developed a single-step, microfluidic-supported synthesis for anisotropic polyvinyl methacrylate (PVMA) nanoparticles (NPs) by combining the advantages of microfluidics (providing homogeneous conditions for the initial emulsification process) and bulk batch synthesis (providing inhomogenous conditions for the thermal polymerization). Specifically, we tested five interfacial agents regarding their direct impact on the NP shape (from isotropic spherical to anisotropic flower-like shapes) and their concentration-dependent impact (from 0.1 mM to 20 mM) on the NP diameter (from 200 nm to 50 nm). We employed vinyl methacrylate (VMA), a monomer offering two-polymerization active sites. With our work, we contribute to a fundamental understanding of colloidal polymerization towards predictive shapes below the critical 200 nm regime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要