Asynchronous embryonic germ cell development leads to a heterogeneity of postnatal ovarian follicle activation and may influence the timing of puberty onset in mice

BMC Biology(2022)

引用 8|浏览14
暂无评分
摘要
Background Ovarian follicles, which are the basic units of female reproduction, are composed of oocytes and surrounding somatic (pre) granulosa cells (GCs). A recent study revealed that signaling in somatic preGCs controlled the activation (initial recruitment) of follicles in the adult ovaries, but it is also known that there are two waves of follicle with age-related heterogeneity in their developmental dynamics in mammals. Although this heterogeneity was proposed to be crucial for female reproduction, our understanding of how it arises and its significance is still elusive. Results In the current study, by deleting the key secreted factor KIT ligand from preGCs and analyzing the follicle cell developmental dynamics, we revealed distinct patterns of activation and growth associated with the two waves of follicles in mouse ovary. Our results confirmed that activation of adult wave follicles is initiated by somatic preGCs and dependent on the KIT ligand. By contrast, activation of first wave follicles, which are awakened from germ cells before follicle formation, can occur in the absence of preGC-secreted KIT ligand in postnatal ovaries and appears to be oocyte-initiated. We also found that the asynchronous activity of phosphatidylinositol 3 kinases (PI3K) signaling and meiotic process in embryonic germ cells lead to the follicle heterogeneity in postnatal ovaries. In addition, we supplied evidence that the time sequence of embryonic germ cell development and its related first wave follicle growth are correlated to the time of puberty onset in females. Conclusion Taken together, our study provides evidence that asynchronous development of embryonic oocytes leads to the heterogeneity of postnatal ovarian follicle activation and development, and affects the timing of onset of puberty in females.
更多
查看译文
关键词
Embryonic germ cells,Ovarian follicle heterogeneity,Primordial follicle activation,Meiosis,Puberty onset
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要