Fabrication of a porous polyacrylonitrile nanofiber adsorbent for removing radioactive 60Co

Chemosphere(2022)

引用 0|浏览10
暂无评分
摘要
A Co2+ adsorbent was prepared using electrospun porous polyacrylonitrile (PAN) nanofibers, featuring easy recovery for reuse compared with a nanoparticle-based adsorbent. As an efficient ligand for Co2+, ethylenediaminetetraacetic acid (EDTA) was introduced on the surface of porous PAN nanofibers with the aid of a branched polyethyleneimine (PEI) linker to obtain an adsorbent with carboxylic acid groups. On the adsorbent surface, the carboxylic acid and amine groups from EDTA could adsorb Co2+ via ion exchange and chelation, and amine groups from PEI that remained after EDTA functionalization played a role in coordinating Co2+. The amine and carboxylic acid groups were simultaneously involved in the adsorption on the surface, making it possible to remove Co2+ over a wide pH range. An investigation of the adsorption isotherms and kinetics of the nanofibrous adsorbent indicated that monolayer chemisorption was achieved with a maximum Co2+ adsorption capacity of 8.32 mg/g. In addition, radioactive 60Co was efficiently removed by the adsorbent with a removal extent of more than 98%. Considering the easy separation from Co2+ solution and regeneration of the nanofibrous adsorbent and its availability in a wide pH range, the adsorbent has great advantages in practical applications.
更多
查看译文
关键词
Porous polyacrylonitrile nanofibers,Electrospinning,Radioactive 60Co adsorbent,Ethylenediaminetetraacetic acid,Polyethyleneimine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要