Structural and Magnetic Phase Transitions in BiFe1 − Xmnxo3 Solid Solution Driven by Temperature
Nanomaterials(2022)
Abstract
The crystal structure and magnetic state of the (1 − x)BiFeO3-(x)BiMnO3 solid solution has been analyzed by X-ray diffraction using lab-based and synchrotron radiation facilities, magnetization measurements, differential thermal analysis, and differential scanning calorimetry. Dopant concentration increases lead to the room-temperature structural transitions from the polar-active rhombohedral phase to the antipolar orthorhombic phase, and then to the monoclinic phase accompanied by the formation of two-phase regions consisting of the adjacent structural phases in the concentration ranges 0.25 < x1 < 0.30 and 0.50 ≤ x2 < 0.65, respectively. The accompanied changes in the magnetic structure refer to the magnetic transitions from the modulated antiferromagnetic structure to the non-colinear antiferromagnetic structure, and then to the orbitally ordered ferromagnetic structure. The compounds with a two-phase structural state at room temperature are characterized by irreversible temperature-driven structural transitions, which favor the stabilization of high-temperature structural phases. The magnetic structure of the compounds also exhibits an irreversible temperature-induced transition, resulting in an increase of the contribution from the magnetic phase associated with the high-temperature structural phase. The relationship between the structural parameters and the magnetic state of the compounds with a metastable structure is studied and discussed depending on the chemical composition and heating prehistory.
MoreTranslated text
Key words
crystal structure,magnetic state,multiferroics,phase transitions,magnetometry,X-ray diffraction,synchrotron diffraction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined