Impacts of Household Coal Combustion on Indoor Ultrafine Particles-A Preliminary Case Study and Implication on Exposure Reduction

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH(2022)

引用 6|浏览20
暂无评分
摘要
Ultrafine particles (UFPs) significantly affect human health and climate. UFPs can be produced largely from the incomplete burning of solid fuels in stoves; however, indoor UFPs are less studied compared to outdoor UFPs, especially in coal-combustion homes. In this study, indoor and outdoor UFP concentrations were measured simultaneously by using a portable instrument, and internal and outdoor source contributions to indoor UFPs were estimated using a statistical approach based on highly temporally resolved data. The total concentrations of indoor UFPs in a rural household with the presence of coal burning were as high as 1.64 x 10(5) (1.32 x 10(5)-2.09 x 10(5) as interquartile range) #/cm(3), which was nearly one order of magnitude higher than that of outdoor UFPs. Indoor UFPs were unimodal, with the greatest abundance of particles in the size range of 31.6-100 nm. The indoor-to-outdoor ratio of UFPs in a rural household was about 6.4 (2.7-16.0), while it was 0.89 (0.88-0.91) in a home without strong internal sources. A dynamic process illustrated that the particle number concentration increased by similar to 5 times during the coal ignition period. Indoor coal combustion made up to over 80% of indoor UFPs, while in an urban home without coal combustion sources indoors, the outdoor sources may contribute to nearly 90% of indoor UFPs. A high number concentration and a greater number of finer particles in homes with the presence of coal combustion indicated serious health hazards associated with UFP exposure and the necessity for future controls on indoor UFPs.
更多
查看译文
关键词
ultrafine particles, indoor coal combustion, number concentration, size distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要