谷歌浏览器插件
订阅小程序
在清言上使用

Investigating Presence of Motion Artifacts in the Oxygen Saturation Signal During In-Vivo Fiber Photometry

Neural Imaging and Sensing 2022(2022)

引用 1|浏览2
暂无评分
摘要
Oxygen saturation (sO2) and blood perfusion in brain tissue have been known to be modulated with cellular activity in the brain. A single fiber system (SFS) has previously been shown to enable sO2 measurements from localized deep brain regions in freely moving animals. Reflectance spectra (RSF) obtained through the SFS can be used to understand changes in blood perfusion and fit to an empirical model to extract sO2. The sO2 extracted is dependent on the shape of RSF and thus relatively resistant to noise as compared to blood perfusion which is dependent on the magnitude of RSF at specific wavelengths. While slow changes in sO2 have been shown to be robust, sources of certain relatively rapid temporal variations observed in the sO2 signal remains unclear. Potential sources could be variations in cellular activity in the brain or noise due to motion artifacts. In this work, we have described the design of new experiments focused to investigate the effects of motion artifacts on RSF and sO2. Computer simulations and mathematical modelling have been used to explain the experimental findings. Results suggest that the motion artifacts mainly arise from the fiber/brain interface and appear to offset RSF. Using the interpretation from a mathematical model, we also propose a motion artifact correction algorithm which can potentially be used for comparison of perfusion signals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要