Adaptive construction of shallower quantum circuits with quantum spin projection for fermionic systems

Takashi Tsuchimochi, Masaki Taii, Taisei Nishimaki,Seiichiro L. Ten-no

PHYSICAL REVIEW RESEARCH(2022)

引用 7|浏览1
暂无评分
摘要
Quantum computing is a promising approach to harnessing strong correlation in molecular systems; however, current devices only allow for hybrid quantum-classical algorithms with a shallow circuit depth, such as the variational quantum eigensolver (VQE). In this paper, we report the importance of the Hamiltonian symmetry in constructing VQE circuits adaptively (ADAPT-VQE). This treatment often violates symmetry, thereby deteriorating the convergence of fidelity to the exact solution and ultimately resulting in deeper circuits. We demonstrate that spin-symmetry projection can provide a simple yet effective solution to this problem, by keeping the quantum state in the correct symmetry space, to reduce the overall gate operations. To further investigate the role of spin-symmetry in computing molecular properties with ADAPT-VQE, we have derived the analytical derivative of symmetry-projected VQE energy. Our illustrative calculations reveal the significance of preserving symmetry in providing accurate dipole moments and geometries with variational approximations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要