Rolis: a software approach to efficiently replicating multi-core transactions

European Conference on Computer Systems(2022)

引用 2|浏览23
ABSTRACTThis paper presents Rolis, a new speedy and fault-tolerant replicated multi-core transactional database system. Rolis's aim is to mask the high cost of replication by ensuring that cores are always doing useful work and not waiting for each other or for other replicas. Rolis achieves this by not mixing the multi-core concurrency control with multi-machine replication, as is traditionally done by systems that use Paxos to replicate the transaction commit protocol. Instead, Rolis takes an "execute-replicate-replay" approach. Rolis first speculatively executes the transaction on the leader machine, and then replicates the per-thread transaction log to the followers using a novel protocol that leverages independent Paxos instances to avoid coordination, while still allowing followers to safely replay. The execution, replication, and replay are carefully designed to be scalable and have nearly zero coordination overhead across cores. Our evaluation shows that Rolis can achieve 1.03M TPS (transactions per second) on the TPC-C workload, using a 3-replica setup where each server has 32 cores. This throughput result is orders of magnitude higher than traditional software approaches we tested (e.g., 2PL), and is comparable to state-of-the-art, fault-tolerant, in-memory storage systems built using kernel bypass and advanced networking hardware, even though Rolis runs on commodity machines.
distributed systems, concurrency, multicore
AI 理解论文
Chat Paper