A Wide Field-of-View Light-Field Camera with Adjustable Multiplicity for Practical Applications

SENSORS(2022)

引用 4|浏览3
暂无评分
摘要
The long-fascinated idea of creating 3D images that depict depth information along with color and brightness has been realized with the advent of a light-field camera (LFC). Recently advanced LFCs mainly utilize micro-lens arrays (MLAs) as a key component to acquire rich 3D information, including depth, encoded color, reflectivity, refraction, occlusion, and transparency. The wide field-of-view (FOV) capability of LFCs, which is expected to be of great benefit for extended applications, is obstructed by the fundamental limitations of LFCs. Here, we present a practical strategy for the wide FOV-LFC by adjusting the spacing factor. Multiplicity (M) is the inverse magnification of the MLA located between the image plane and the sensor, which was introduced as the overlap ratio between the micro-images. M was adopted as a design parameter in several factors of the LFC, and a commercial lens with adjustable FOV was used as the main lens for practicality. The light-field (LF) information was evaluated by considering the pixel resolution and overlapping area in narrow and wide FOV. The M was optimized for narrow and wide FOV, respectively, by the trade-off relationship between pixel resolution and geometric resolution. Customized wide FOV-LFCs with different M were compared by spatial resolution test and depth information test, and the wide FOV-LFC with optimized M provides LF images with high accuracy.
更多
查看译文
关键词
light-field camera, wide field-of-view, micro-lens array, 3D information
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要