Advances in Titanium/Polymer Hybrid Joints by Carbon Fiber Plug Insert: Current Status and Review

MATERIALS(2022)

引用 9|浏览3
暂无评分
摘要
A literature review of up-to-date methods to strengthen Ti/carbon-fiber-reinforced polymer (CFRP) hybrid joints is given. However, there are little or no studies on Ti/CFRP joints by carbon fiber plug insert, which takes advantage of the extremely high surface adhesion area of similar to 6 mu m CFs. Therefore, we cover the current status and review our previously published results developing hybrid joints by a CF plug insert with spot-welded Ti half-lengths to enhance the safety levels of aircraft fan blades. A thermoset Ti/CF/epoxy joint exhibited an ultimate tensile strength (UTS) of 283 MPa when calculated according to the rule of mixtures (RM) for the CF cross-section portion. With concern for the environment, thermoplastic polymers (TPs) allowed recyclability. However, a drawback is easy CF pull-out from difficult-to-adhere TPs due to insufficient contact sites. Therefore, research on a novel method of homogeneous low voltage electron beam irradiation (HLEBI) to activate a bare CF half-length prior to dipping in a TP resin was reviewed and showed that the UTS by the RM of Ti/EBCF/acrylonitrile butadiene styrene (ABS) and Ti/EBCF/polycarbonate (PC) joints increased 154% (from 55 to 140 MPa) and 829% (from 30 to 195 MPa), respectively, over the untreated sample. The optimum 0.30 MGy HLEBI prevented CF pull-out by apparently growing crystallites into the TP around the CF circumference, raising the UTS amount closer to that of epoxy.
更多
查看译文
关键词
hybrid joint, thermoplastic, thermoset, titanium, spot-welding, carbon fiber, electron beam
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要