Cellulose Nanocrystals-mediated Phase Morphology of PLLA/TPU Blends for 3D Printing

CHINESE JOURNAL OF POLYMER SCIENCE(2022)

引用 3|浏览5
暂无评分
摘要
Incorporation of nanoparticles into polymer blend to obtain finely dispersed morphology has been considered as an effective strategy to prepare nanocomposites. Owing to the renewable and degradable characters, cellulose nanocrystals (CNCs) have been proposed to tailor the phase morphology of poly(L-lactic acid) (PLLA) blend for producing high-performance fused deposition modeling (FDM) consumables. However, the main challenge associated with the ternary systems is the dispersion of the highly hydrophilic CNCs in non-polar PLLA blend by industrial melt blending without involving solution. Herein, with poly(vinyl acetate) (PVAc) modified CNCs powder (a mixture of PVAc grafted from CNCs and PVAc homopolymer latex), the selective dispersion of CNCs in PLLA has been achieved by simple melt processing of PLLA/TPU (polyether polyurethane)/CNCs blend. This results in the ultra-fine TPU droplets at nanoscale in PLLA and improves the melt processibility of composites in FDM due to the decreased viscosity ratio of the dispersed/matrix and the enhanced melt elasticity of PLLA. Combined with the intensive shear and continuous stretch effect during FDM, aligned TPU nanofibers (TNFs) were in situ formed along the elongational flow direction during deposition, which in turn contributed to the improvement of PLLA/TPU/CNCs with 5 wt% filler loading in tensile ductility by 418%, inter-layer adhesion strength and notched impact toughness by 261% and 210%, respectively, as well as achieved good dimensional accuracy and very fine surface quality.
更多
查看译文
关键词
Poly(L-lactic acid) blend,Cellulose nanocrystals,Phase morphology tailoring,3D printing,Rheo-viscoelastic properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要