Understanding transboundary stocks' availability by combining multiple fisheries-independent surveys and oceanographic conditions in spatiotemporal models

ICES JOURNAL OF MARINE SCIENCE(2022)

引用 14|浏览8
暂无评分
摘要
Shifts in the distribution of groundfish species as oceans warm can complicate management efforts if species distributions expand beyond the extent of existing scientific surveys, changing the proportion of groundfish available to any one survey each year. We developed the first-ever model-based biomass estimates for three Bering Sea groundfishes (walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus), and Alaska plaice (Pleuronectes quadrituberculatus)) by combining fishery-independent bottom trawl data from the U.S. and Russia in a spatiotemporal framework using Vector Autoregressive Spatio-Temporal (VAST) models. We estimated a fishing-power correction to calibrate disparate data sets and the effect of an annual oceanographic index to explain variation in groundfish spatiotemporal density. Groundfish densities shifted northward relative to historical densities, and high-density areas spanned the international border, particularly in years warmer than the long-term average. In the final year of comprehensive survey data (2017), 49%, 65%, 47% of biomass was in the western and northern Bering Sea for pollock, cod, and plaice, respectively, suggesting that availability of groundfish to the more regular eastern Bering Sea survey is declining. We conclude that international partnerships to combine past data and coordinate future data collection are necessary to track fish as they shift beyond historical survey areas.
更多
查看译文
关键词
Bering Sea, bottom-trawl, catchability, cold pool index, model-based index, VAST
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要