Oxidized Multiwalled Carbon Nanotubes as Components and Oxidant Agents in the Formation of Multiwalled Carbon Nanotube/Polyazulene Composites

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2022)

引用 2|浏览4
暂无评分
摘要
This work describes the practical and facile synthesis of oxidized multiwalled carbon nanotube/polyazulene (ox-MWCNT/PAZ) composites. In the proposed procedure, oxidized multiwalled carbon nanotubes were used both as components and oxidant agents in the formed composite material, which eliminated the use of conventional oxidizing agents such as ferric chloride. The properties and morphology of composite materials depend on the synthesis conditions, such as monomer concentration, synthesis time and synthesis temperature. The composite material is much more stable at high temperatures than pristine polyazulene. Additionally, the electrochemical performance of composite materials is better than that of pure polymeric materials. The highest specific capacitance of the ox-MWCNT/PAZ composite equals 381 F g(PAZ) (-1). This value is approximately 5 times higher than the specific capacitance of pristine polyazulene. This high value results from the larger surface area of the composite material and its easier penetration by counterions of the supporting electrolyte during the oxidation process. Apart from the traditional doping process by counterions, the composite material is additionally codoped by hexafluorophosphate anions of the supporting electrolyte, which form hydrogen bonds with surface hydroxyl groups of ox-MWCNTs. (c) 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要