Data-Driven Method for Predicting Soil Pressure of Foot Blades within a Large Underwater Caisson

Can Huang, Hao Zhu,Kunyao Li,Jianxin Zheng, Hao Li,Jiaming Li, Yao Xiao

GEOFLUIDS(2022)

引用 0|浏览4
暂无评分
摘要
The soil pressure on the bottom surface of the foot blades is an important monitoring point during the sinking process of large underwater caissons. Complex soil-structure interactions occur during the sinking process, making it difficult to accurately predict the soil pressure of foot blades. Accurate construction processes often rely on data from the soil pressure of foot blades in the field. In this study, a data-driven approach is used to establish the relationship between the amount of sinking of the caisson and the soil pressure of foot blades. Furthermore, by improving the splitting method of the original Classification and Regression Tree (CART) algorithm, a single model's numerical prediction of 80-foot blades soil pressures is realized. The improved CART model, multilayer perceptron (MLP), long short-term memory (LSTM), and a linear regression model are compared through a comprehensive multiparameter evaluation method. Finally, this article discusses the deployment scheme of the model by comparing and analyzing the data in the time period of 10 : 00 on July 29, 2020, and 23 : 00 on August 7, 2020. The experimental results can satisfy the engineering demands and provide a basis for further data-driven intelligent control of large caisson sinking.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要