Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind

ATMOSPHERE(2022)

引用 2|浏览6
暂无评分
摘要
Northern China experienced a severe sand and dust storm (SDS) on 14/15 March 2021. It was difficult to simulate this severe SDS event accurately. This study compared the performances of three dust-emission schemes on simulating PM10 concentration during this SDS event by implementing three vertical dust flux parameterizations in the Comprehensive Air-Quality Model with Extensions (CAMx) model. Additionally, a statistical gusty-wind model was implemented in the dust-emission scheme, and it was used to quantify the gusty-wind contribution to dust emissions and peak PM10 concentration. As a result, the LS scheme (Lu and Shao 1999) produced the minimum errors for peak PM10 concentrations, the MB scheme (Marticorena and Bergametti 1995) underestimated the PM10 concentrations by 70-90%, and the KOK scheme (Kok et al. 2014) overestimated PM10 concentrations by 10-50% in most areas. The gusty-wind model could reasonably reproduce the probability density function of 2-min wind speeds. There were 5-40% more dust-emission flux and 5-40% more peak PM10 concentrations generated by the gusty wind than the hourly wind in the dust-source regions. The increase of peak PM10 concentration caused by gusty wind in the non-dust-source regions was higher than in the dust-source regions, with 10-50%. Implementing the gusty-wind model could help improve the LS scheme's performance in simulating PM10 concentrations of this severe SDS event. More work is still needed to investigate the reliability of the gusty-wind model and LS scheme on various SDS events.
更多
查看译文
关键词
sand and dust storms, gusty-wind model, vertical dust flux parameterizations, CAMx
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要