Approaching the motional ground state of a 10 kg object

Chris Whittle,Evan D. Hall,Sheila Dwyer,Nergis Mavalvala,Vivishek Sudhir,R. Abbott, A. Ananyeva,C. Austin,L. Barsotti,J. Betzwieser,C. D. Blair,A. F. Brooks,D. D. Brown,A. Buikema,C. Cahillane,J. C. Driggers,A. Effler,A. Fernandez-Galiana,P. Fritschel,V. V. Frolov, T. Hardwick, M. Kasprzack, K. Kawabe,N. Kijbunchoo,J. S. Kissel,G. L. Mansell,F. Matichard,L. McCuller,T. McRae,A. Mullavey,A. Pele, R. M. S. Schofield,D. Sigg,M. Tse,G. Vajente,D. C. Vander-Hyde,Hang Yu,Haocun Yu,C. Adams,R. X. Adhikari, S. Appert,K. Arai,J. S. Areeda,Y. Asali, S. M. Aston, A. M. Baer,M. Ball,S. W. Ballmer,S. Banagiri,D. Barker,J. Bartlett,B. K. Berger,D. Bhattacharjee,G. Billingsley,S. Biscans,R. M. Blair,N. Bode,P. Booker, R. Bork, A. Bramley,K. C. Cannon,X. Chen,A. A. Ciobanu,F. Clara, C. M. Compton,S. J. Cooper,K. R. Corley,S. T. Countryman,P. B. Covas, D. C. Coyne,L. E. H. Datrier,D. Davis,C. Di Fronzo,K. L. Dooley,P. Dupej, T. Etzel,M. Evans,T. M. Evans, J. Feicht,P. Fulda, M. Fyffe,J. A. Giaime,K. D. Giardina,P. Godwin,E. Goetz,S. Gras,C. Gray,R. Gray,A. C. Green,E. K. Gustafson,R. Gustafson,J. Hanks,J. Hanson, R. K. Hasskew,M. C. Heintze,A. F. Helmling-Cornell, N. A. Holland,J. D. Jones,S. Kandhasamy,S. Karki, P. J. King,Rahul Kumar,M. Landry,B. B. Lane,B. Lantz,M. Laxen, Y. K. Lecoeuche, J. Leviton,J. Liu, M. Lormand,A. P. Lundgren,R. Macas, M. MacInnis,D. M. Macleod,S. Márka,Z. Márka,D. V. Martynov,K. Mason,T. J. Massinger,R. McCarthy,D. E. McClelland,S. McCormick,J. McIver, G. Mendell, K. Merfeld,E. L. Merilh,F. Meylahn, T. Mistry,R. Mittleman,G. Moreno,C. M. Mow-Lowry,S. Mozzon, T. J. N. Nelson,P. Nguyen,L. K. Nuttall, J. Oberling,Richard J. Oram,C. Osthelder,D. J. Ottaway, H. Overmier,J. R. Palamos,W. Parker,E. Payne, R. Penhorwood,C. J. Perez, M. Pirello, H. Radkins, K. E. Ramirez,J. W. Richardson,K. Riles, N. A. Robertson,J. G. Rollins, C. L. Romel,J. H. Romie,M. P. Ross,K. Ryan,T. Sadecki,E. J. Sanchez,L. E. Sanchez,T. R. Saravanan,R. L. Savage, D. Schaetzl,R. Schnabel,E. Schwartz,D. Sellers,T. Shaffer,B. J. J. Slagmolen,J. R. Smith,S. Soni,B. Sorazu,A. P. Spencer,K. A. Strain,L. Sun,M. J. Szczepańczyk,M. Thomas, P. Thomas, K. A. Thorne,K. Toland,C. I. Torrie, G. Traylor, A. L. Urban,G. Valdes,P. J. Veitch,K. Venkateswara,G. Venugopalan, A. D. Viets,T. Vo, C. Vorvick,M. Wade,R. L. Ward,J. Warner,B. Weaver,R. Weiss,B. Willke,C. C. Wipf,L. Xiao,H. Yamamoto,L. Zhang,M. E. Zucker,J. Zweizig

arxiv(2021)

引用 87|浏览25
暂无评分
摘要
The motion of a mechanical object -- even a human-sized object -- should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult: the thermal environment effectively masks any quantum signature of the object's motion. Indeed, it also masks effects of proposed modifications of quantum mechanics at large mass scales. We prepare the center-of-mass motion of a $10$ kg mechanical oscillator in a state with an average phonon occupation of $10.8$. The reduction in oscillator temperature, from room temperature to $77$ nK, represents a 100-fold improvement in the reduction of temperature of a solid-state mechanical oscillator -- commensurate with a 11 orders-of-magnitude suppression of quantum back-action by feedback -- and a 10 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state.
更多
查看译文
关键词
motional ground state,object
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要