Facile assembly of amorphous Fe2O3 nanoparticle@dry graphene oxide composites for lithium-ion storage

Ya Liu,Minyue Li,Bo Lei, Minghong Wu,Jing Zhan

NEW JOURNAL OF CHEMISTRY(2022)

引用 1|浏览2
暂无评分
摘要
In recent years, the research on iron-based graphene composites in the field of energy storage has been extensive. However, the synthesis of most of these materials requires a lot of energy and the particles tend to agglomerate on the graphene surface. Therefore, the simple and low-cost method to synthesize small-particle iron-based graphene composites is still a scientific research subject worthy of in-depth study. In this paper, we obtain the amorphous Fe2O3 nanoparticle@dry graphene oxide composites (am-Fe2O3-dGO) in a low-cost and straightforward way at room temperature. The obtained amorphous Fe2O3 nanoparticles are uniformly distributed on the dried GO (dGO) film and these tiny nanoparticles loaded on graphene provide excellent conditions for the diffusion of lithium ions. In addition, the amorphous nature of Fe2O3 also helps decorated dGO achieve remarkable cycling stability and rate performance. After low-temperature modification of am-Fe2O3, the lithium-ion storage capacity of dGO increased by about 158%. The specific capacities of dGO and am-Fe2O3-dGO for the first charge are 258 and 667 mA h g(-1) at 0.1 A g(-1), respectively. This work shows that the lithium storage performance of dGO was significantly improved by the modification of am-Fe2O3.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要