Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide

NATURE ELECTRONICS(2022)

引用 32|浏览14
暂无评分
摘要
Symmetry plays a central role in determining the polarization of spin currents induced by electric fields. It also influences how these spin currents generate spin-transfer torques in magnetic devices. Here we show that an out-of-plane damping-like torque can be generated in ruthenium dioxide (RuO 2 )/permalloy devices when the Néel vector of the collinear antiferromagnet RuO 2 is canted relative to the sample plane. By measuring characteristic changes in all three components of the electric-field-induced torque vector as a function of the angle of the electric field relative to the crystal axes, we find that the RuO 2 generates a spin current with a well-defined tilted spin orientation that is approximately parallel to the Néel vector. A maximum out-of-plane damping-like spin torque efficiency per unit electric field of 7 ± 1 × 10 3 Ω −1 m −1 is measured at room temperature. The observed angular dependence indicates that this is an antiferromagnetic spin Hall effect with symmetries that are distinct from other mechanisms of spin-current generation reported in antiferromagnetic and ferromagnetic materials.
更多
查看译文
关键词
Magnetic devices,Spintronics,Electrical Engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要