谷歌浏览器插件
订阅小程序
在清言上使用

Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion

ADVANCED ENERGY MATERIALS(2022)

引用 37|浏览53
暂无评分
摘要
Since the discovery of Rochelle salt a century ago, ferroelectric materials have been investigated extensively due to their robust responses to electric, mechanical, thermal, magnetic, and optical fields. These features give rise to a series of ferroelectric-based modern device applications such as piezoelectric transducers, memories, infrared detectors, nonlinear optical devices, etc. On the way to broaden the material systems, for example, from three to two dimensions, new phenomena of topological polarity, improper ferroelectricity, magnetoelectric effects, and domain wall nanoelectronics bear the hope for next-generation electronic devices. In the meantime, ferroelectric research has been aggressively extended to more diverse applications such as solar cells, water splitting, and CO2 reduction. In this review, the most recent research progress on newly emerging ferroelectric states and phenomena in insulators, ionic conductors, and metals are summarized, which have been used for energy storage, energy harvesting, and electrochemical energy conversion. Along with the intricate coupling between polarization, coordination, defect, and spin state, the exploration of transient ferroelectric behavior, ionic migration, polarization switching dynamics, and topological ferroelectricity, sets up the physical foundation ferroelectric energy research. Accordingly, the progress in understanding of ferroelectric physics is expected to provide insightful guidance on the design of advanced energy materials.
更多
查看译文
关键词
capacitors,CO,(2) reduction,ferroelectric energy materials,solar cells,water splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要