The influence of threading dislocations propagating through an AlGaN UVC LED

APPLIED PHYSICS LETTERS(2022)

引用 5|浏览4
暂无评分
摘要
During the epitaxy of AlGaN on sapphire for deep UV emitters, significant lattice mismatch leads to highly strained heterojunctions and the formation of threading dislocations. Combining cathodoluminescence, electron beam induced current and x-ray microanalysis reveal that dislocations with a screw component permeate through a state-of-the-art UVC LED heterostructure into the active region and perturb their local environment in each layer as growth progresses. In addition to acting as non-radiative recombination centers, these dislocations encourage high point defect densities and three-dimensional growth within their vicinity. We find that these point defects can add parasitic recombination pathways and compensate intentional dopants. (C) 2022 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要