Assessing the Global Relationships Between Teleconnection Factors and Terrestrial Water Storage Components

WATER RESOURCES MANAGEMENT(2021)

引用 4|浏览5
暂无评分
摘要
It has been shown that the changes in global terrestrial water storage (TWS) are strongly linked to the teleconnections (TCs) that induce large-scale climate variations. However, the contributions of the different TCs to global changes of TWS and its components (water storage components, WSCs) remain undetermined. To fill this gap, we systematically assess the relationships between six major ocean-related TCs and different WSCs derived from the Gravity Recovery and Climate Experiment (GRACE) mission and hydrological models under different timescales. Additionally, the interrelationships of the TCs are also analyzed via the independent component analysis for further investigation. The results allow an improved understanding of the hydrometeorological process controlling WSC changes. Specifically, the annual timescale analysis can constrain high-frequency noises and retain the informative fluctuations of WSC residuals. ENSO and AMO are found to be the two most dominant TCs controlling the variations of WSCs globally. TWS and groundwater storage (GWS) are the two WSCs most correlated with the dominant TCs. The WSCs at shallow depths, which are largely affected by strongly hysteretic controls of TCs, are more closely linked to the TCs with many high-frequency components that tend to have weak hysteresis on WSCs. As for the interrelationships of TCs, the independent component, which is highly correlated with all six TCs, has a predominant influence on WSCs.
更多
查看译文
关键词
GRACE, Global hydrological model, Land surface model, Teleconnection, Terrestrial water storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要