Separation of isoprene from biologically-derived gas streams

SEPARATION SCIENCE AND TECHNOLOGY(2022)

引用 0|浏览11
暂无评分
摘要
Renewable organic precursors, including olefinic compounds such as isoprene, have attracted interest from the polymer and pharmaceutical industries. Biologically-derived processes can generate these target compounds; however, their gaseous product streams are complex mixtures of condensable organic vapors (COVs), water vapor, carbon dioxide (CO2), and/or nitrogen (N-2). Because COVs, CO2 and water vapor are known to alter polymer membranes, mixed gas separations data at ambient and elevated temperatures are limited. This study focused on two classes of polymer membranes, glassy [polyetherimide (Ultem (R))] and a rubbery [polydimethylsiloxane (PDMS)] with results indicating that isoprene separation is possible in humidified gas environment (2-4 vol% water). Gas permeabilities of these membranes did not noticeably change in the presence of humidity; however, the selectivity of these membranes was significantly lower compared to their performance under dry conditions. The role of water vapor in gas transport was derived from the energy of activation of permeation (E-p) for PDMS and Ultem (R) from 30-80 degrees C in humidified mixed gas streams. For both polymers, E-p data shows a slight decrease in selectivity with the other gases (hydrogen, N-2, CO2, and methane) at elevated temperatures in the presence of water vapor. Thus, these COVs separations are feasible with polymer membranes in the presence of humidified gas streams, even in the case of glassy and rubbery membranes in series.
更多
查看译文
关键词
Polyetherimide, polydimethylsiloxane, polymer membrane separations, isoprene, gas permeation analysis, water vapor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要