Surface polarization of BiOI to boost photoelectrochemical signal transduction for high-performance bioassays

CHEMICAL COMMUNICATIONS(2022)

引用 2|浏览0
暂无评分
摘要
Surface-hydroxylation-induced polarization (SHIP) was shown to promote the cathodic photoelectrochemical (PEC) communication of bismuth oxyiodide with doxorubicin (Dox) by as much as three orders of magnitude. This SHIP tactic was used to establish a polarization electric field (PEF) that not only negatively shifted the conduction band (CB) edge but also promoted the dynamic migration of photogenerated electrons of BiOI to Dox. The tactic underlies a pioneering way to boost signal transduction, and hence offers fresh opportunities for high-performance bioassays.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要